Technical Appendix 8: Ornithology

TA 8.1: Ornithology Appendix
TA 8.2: Collision Risk Analysis

Technical Appendix 8.1: Ornithology Appendix

Artfield Forest Wind Farm
Technical Appendix 8.1: Ornithological Appendix

CONTENTS

1 INTRODUCTION 1
1.2 Site Overview .1
1.3 Key Guidance 2
1.4 Target Species 2
2 DESK STUDY 3
2.1 Methodology 3
2.2 Results 4
3 FIELD SURVEYS 6
3.2 Field Survey Personnel 6
3.3 Methodologies 6
3.4 Results 11

ANNEXES

Annex 1-Bird Species Summary
Annex 2 - Existing Ornithological Records
Annex 3 - Ornithology Field Survey Effort
Annex 4 - VP Flight Activity Survey: Target Species Flights
Annex 5 - Cumulative Developments within NHZ 19
Annex 6 - NatureScot Survey Methodology Correspondence

1 INTRODUCTION

1.1.1 This Appendix has been prepared to accompany Chapter 8: Ornithology of the Artfield Forest Wind Farm (the Proposed Development) Environmental Impact Assessment (EIA) Report.
1.1.2 It presents detailed methodologies and results of ornithology desk studies and field surveys to inform the design and assessment of the Proposed Development.
1.1.3 It should be read with reference to the following Figures, which are included within Volume 3a of the EIA Report:

- Figure 8.1: Ornithological Statutory Designated Sites;
- Figure 8.2: Desk Study;
- Figure 8.3: Vantage Point (VP) Survey Plan;
- Figure 8.4: Breeding Bird Survey Plan;
- Figure 8.5a: VP Flight Activity Target Species Results (Raptors);
- Figure 8.5b: VP Flight Activity Target Species Results (Non-Raptors);
- Figure 8.6: VP Flight Activity Target Species Results at Collision Risk Height;
- Figure 8.7: Moorland Breeding Bird Survey (MBBS) Results; and
- Figure 8a: Confidential Annex $1 /$ Schedule 1 Breeding Raptor and Owl Results ${ }^{1}$.
1.1.4 Only common bird species names are referred to within the main text of this Technical Appendix Annex 1 provides a summary of all bird species referred to herein, within Chapter 8: Ornithology of the EIA Report and all other associated Appendices and Figures. Both common and species names together with a summary of their conservation status as relevant is provided.
1.1.5 Collision mortality risk analysis is provided separately in Technical Appendix 8.2.
1.1.6 Information pertaining to the locations of sensitive breeding bird species and which are considered confidential is provided in Confidential Figure 8.A in Volume 5. Such information will not be made publically available, but will be provided to the Scottish Government and NatureScot.

1.2 Site Overview

1.2.1 The Site is located approximately 8 km northwest of Kirkcowan, 15 km west of Newton Stewart, Dumfries and Galloway, Scotland. The habitats comprise a mix of commercially managed coniferous forestry and rough grazing pastures. The Site also supports areas of recently felled and replanted woodland together with compartments of mixed plantation woodland
1.2.2 Several watercourses intersect the Site, which primarily drain into the Tarf Water river. The Mulniegarroch Burn / Purgatory Burn forms part of the Sites north western boundary.
1.2.3 The eastern extent of the Site holds previous planning consent for the Gass Wind Farm, comprising nine wind turbines and associated infrastructure (Dumfries and Galloway Council Planning Reference

The confidential figure sits in Volume 5: Confidential Documents.
Artfield Forest Wind Farm
Technical Appendix 8.1: Ornithology Appendix

14/P/1/0674). Reference is made in this report to the Environmental Impact Assessment undertaken for that application ${ }^{2}$.

1.3 Key Guidance

1.3.1 Ornithology survey methodologies and subsequent interpretation of results has made reference to the following key industry standard guidance produced by NatureScot (formerly Scottish Natural Heritage (SNH)):

- Brown, A.F. \& Shepherd, K. B. (1993). A method for censusing upland breeding waders. Bird Study 40, 189-195.
- SNH (2017). Recommended bird survey methods to inform impact assessment of onshore wind farms. Version 2. March 2017.
- Hardey, J., Crick, H., Wernham, C., Riley, H., Etheridge, B. \& Thompson, D. (2013). Raptors: a field guide to survey and monitoring. Third Edition. The Stationary Office, Edinburgh.
- Gilbert, G., Gibbons, D.W. \& Evans, J. (1998). Bird monitoring methods. A manual of techniques for key UK species. RSPB, Sandy, Bedfordshire.
- Eaton, M., Aebischer, N., Brown, A., Hearn, R., Lock, L., Musgrove A., Noble, D., Stroud, D. \& Gregory, R. (2015). Birds of conservation concern 4: the population status of birds in the UK Channel Islands and Isle of Man. British Birds, 108, pp. 708-746.
- SNH (2000). Windfarms and Birds - Calculating a theoretical collision risk assuming no avoiding action. SNH Guidance Note. Available at http://www.snh.gov.uk/docs/C205425.pdf.
- SNH (2018). Assessing significance of impacts from onshore wind farm outwith designated areas Guidance. Version 2 - February 2018.
- SNH (2016). Assessing connectivity with Special Protection Areas (SPAs). Guidance. Version 3 June 2016.

1.4 Target Species

1.4.1 Target species for survey and recording were identified through desk study and consultation with NatureScot (See Chapter 8: Ornithology of EIA Report), on the basis of their known or likely presence, their likely sensitivity to the proposed scheme and those which are afforded a higher level of legislative protection, which is in accordance with current NatureScot guidance (SNH, 2017 and 2018).
1.4.2 Primarily, target species included those species listed on/as

- Those listed on Annex 1 of the EC Birds Directive (2009/147/EC);
- Those listed on Schedule 1 of the Wildlife and Countryside Act 1981 (Amendment) (Scotland) Regulations 2001;
- Black grouse;
- Nightjar; and

[^0]Technical Appendix 8.1: Ornithology Appendix

- Wetland birds, including geese, duck, waders and waterfowl
1.4.3 This has ensured inclusion of qualifying interests of designated sites for nature conservation (Table 2.2) and target species that should be in the development of onshore wind farms in Scotland, as per guidance (SNH, 2017).

2 DESK STUDY

2.1 Methodology

2.1.1 In accordance with guidance (SNH, 2017), a desk study was undertaken to ascertain an overview of likely bird populations and designated sites in proximity to the Proposed Development, in order to identify possible target species to inform the requirements for survey.
2.1.2 The desk study comprised a review of sources summarised in Table 2.1.
2.1.3 Additional peer reviewed literature and industry guidance, has also been reviewed and is referred to where relevant.

Key Source	Information Sought	Search Area
Sitelink ${ }^{3}$	Statutory designated sites for nature conservation with qualifying ornithological interests.	Within 10 km of the Site boundary, extended to 20 km for internationally designated sites with migratory geese qualifying interests (Figure 8.1 of the EIA Report).
Royal Society for Protection of Birds (RSPB)	Existing ornithological records.	6 km from the approximate Site Centre (NX 24580 67523) (Figure 8.2 of the EIA Report).
Dumfries and Galloway Raptor Study Group (DGRSG)	Existing records of scarce breeding and roosting raptors and owls.	6 km from central grid reference within Site (NX 24580 67523), extended to 10km for eagles (Figure 8.2 of the EIA Report).
South West Scotland Environmental Information Centre (SWSEIC)	Existing ornithological records and non-statutory designated sites with ornithological interest.	Within 5 km of the Site boundary, extended to 10 km for Annex 1^{4} and Schedule 1^{5} bird records (Figure 8.2 of the EIA Report).
Gass Wind Farm Environmental Statement (ES) Chapter 8	Existing ornithological records from baseline surveys.	Study areas are shown on Figures 8.1 and 8.2 of the ES.
Kilgallioch Extension Wind Farm EIS Report Chapter 9	Existing ornithological records from baseline surveys.	Study areas are shown on Figures 9.1 and 9.2 of the ES.

${ }^{3}$ https://sitelink.nature.scot/home.
Species listed on Annex 1 of the Directive 2009/147/EC (the 'Birds Directive')
${ }^{5}$ Species listed on Schedule 1 of the Wildlife and Countryside Act 1981 (as amended).
Technical Appendix 8.1: Ornithology Appendix

2.2 Results

Statutory Designated Sites for Nature Conservation

2.2.1 This section should be read with reference to Figure $\mathbf{8 . 1}$ of the EIA Report.
2.2.2 A review of Sitelink identifies that the Site does not form part of any statutory designated site for nature conservation with qualifying ornithological interests
2.2.3 Table $\mathbf{2 . 2}$ summarises statutory designated sites with ornithological features of interest located within 10 km of the Site boundary, extended to 20 km for internationally designated sites with migratory goose interests.
2.2.4 Distances specified within Table $\mathbf{2 . 2}$ are taken from the Site boundary to the designation boundary at its nearest point.

Table 2.2: Designated sites for nature conservation.

Designated Site	Distance / Orientation	Ornithological Qualifying Interests
Derskelpin Moss SSSI	5.6 km , south east	- Dunlin (breeding); - Breeding bird assemblage, incl. teal, tufted duck, common sandpiper, redshank, oystercatcher, golden plover and black grouse; and, - Foraging hen harrier, merlin and short-eared owl.
Glen App and Galloway Moors SPA	6.2 km , west	- Hen harrier (breeding).
Glen App and Galloway Moors SSSI	6.2 km , west	- Hen harrier (breeding).
Loch of Inch and Torrs Warren SPA	10 km, south west	- Greenland white-fronted goose (non-breeding); and, - Hen harrier (non-breeding).
Loch of Inch and Torrs Warren Ramsar Site	10km, south west	- Greenland white-fronted goose (non-breeding).

Existing Ornithological Records

2.2.5 This section provides a summary of existing ornithological records identified through desk stud sources. Only records of 'Priority Species for assessment when considering the development of onshore wind farms in Scotland' and 'Species with restricted ranges' as listed within Annex 1 of guidance (SNH, 2018). ${ }^{6}$ are considered in detail.
2.2.6 The consideration of existing records are also limited to those reported within the last 10 year (since 2009), so the most up to date (and thus relevant to the Proposed Development) records are regarded.
${ }^{6}$ SNH (2018) Assessing significance of impacts from onshore wind farms outwith designated sites. Guidance. Version $2-$ February 2018.

Artfield Forest Wind Farm
Technical Appendix 8.1: Ornithology Appendix

RSPB

2.2.7 In consultation, the RSPB held only records of nightiar for the search area.
2.2.8 These comprised four records of likely breeding nightjar, with the nearest recorded located approximately 2.6 km east of the Site. Full details for all nightjar records returned from RSPB are provided in Annex 2 and illustrated on Figure 8.2 of the EIA Report.

DGRSG
2.2.9 In consultation with the DGRSG, no records were provided for the search area SWSEIC
2.2.10 SWSEIC returned records of 12 species from within 5 km of the Site (extended to 10 km for Annex 1 and Schedule 1 species).
2.2.11 This included black grouse, pink-footed goose, hen harrier, peregrine falcon and osprey. Full details returned from SWSEIC are provided in Annex 2 and illustrated on Figure 8.2 of the EIA Report.

Gass Wind Farm EIA Documentation
2.2.12 A summary of the surveys undertaken to support the Gass Wind Farm ES Chapter are presented in Table 2.3

Table 2.3: Survey summary which supported the Gass Wind Farm.

Survey type	Dates	Results
Moorland breeding bird survey	Apr-Jul 2012, Apr-Jul 2013	• Lapwing (1 territory) and snipe (1 territory).
Breeding Annex 1/Schedule 1 raptor and owl searches	Mar-Jul 2013	• No breeding species.
Vantage Point (VP) flight activity surveys	Apr 2012 - Sept 2013	- Pink-footed goose (6 flights) and lapwing (3 flights).
Black Grouse Surveys	Mar-Apr 2013	• No black grouse leks.
Winter Walkover Surveys	Oct 2012, Feb 2013	- No wintering geese or swans.

Kilgallioch Extension Wind Farm EIA Documentation

2.2.13 A summary of the surveys undertaken to support the Kilgallioch Extension Wind Farm are presented in Table 2.4.

Survey type	Dates	Results
Moorland breeding bird survey	Apr-Aug 2018	- Snipe (2 territories, probable).
Breeding Annex 1/Schedule 1 raptor and owl searches	Mar-Jul 2018, Feb-Jul 2019	- Barn owl nest site recorded in both years but no definitive evidence of breeding.
Vantage Point (VP) flight activity surveys	$\begin{aligned} & \text { Apr 2018-Aug } \\ & 2019 \end{aligned}$	- Pink-footed goose (1 flight), greylag goose (2 flights), hen harrier (16 flights), goshawk (1 flight), red kite (2 flights), merlin (1 flight), peregrine falcon (2 flights) and short-eared owl (2 flights).

Technical Appendix 8.1: Ornithology Appendix

Survey type	Dates	Results
Black Grouse Surveys	Apr 2014, Apr-May 2015	- No black grouse leks.
Winter Walkover Surveys	Sept 2018-Mar 2019	- Small flock of whooper swans in Nov-Dec 2018 at Loch Eldrig.
Hen harrier roost searches	Sept 2018-Feb 2019	- Three areas for roost sites comprising 2-4 birds.

3 FIELD SURVEYS

3.1.1 Field survey effort and methodologies were agreed with NatureScot prior to commencement (see Chapter 8 of the EIA report Volume 2, Table 8.1 and Annex 6). Detailed knowledge of bir populations, distributions and flight activity in order to assess the potential effects of the Proposed populations, distributions and flight activity in order to assess the potential effects of the Proposed
Development upon ornithological features, has been derived from field surveys undertaken between 2018 and 2019.
3.1.2 Field surveyor knowledge and experience of bird habitat associations at comparable sites has also informed and guided survey effort over the course of surveys.

3.2 Field Survey Personnel

3.2.1 All field surveys have been completed by experienced and professional ornithologists named in Annex 3; all of whom are all fully conversant in recognised bird survey methodologies for proposed wind turbine developments.

3.3 Methodologies

3.3.1 The following ornithology field surveys were completed:

- Vantage Point (VP) flight activity surveys (April 2018 - August 2019)
- Moorland breeding bird survey (MBBS) (2018 and 2019);
- Breeding Annex 1/Schedule 1 raptor and owl searches (2018 and 2019);
- Breeding woodland grouse searches (2018); and,
- Nightjar survey (2018).
3.3.2 All surveys were undertaken in accordance with recommendations outlined within current guidance (SNH, 2017), and as agreed through consultation with NatureScot. Full details of consultations ar provided within Chapter 8: ‘Ornithology’ of the EIA Report.

VP Flight Activity Surveys

3.3.3 VP flight activity surveys were undertaken between April 2018 and August 2019, providing coverage of two consecutive breeding seasons (April to August) and one non-breeding season (September to March).

VP Locations and Viewsheds
3.3.4 Three vantage points were used between April 2018 and March 2019 to provide maximum coverag of the VP Study Area required in accordance with current guidance (SNH, 2017); defined as a 500 m Arttield Forest Wind Farm
Technical Appendix 8.1: Ornithology Appendix
buffer around outermost Proposed Development turbine locations as illustrated in Figure 8.3 of the EIA Report.
3.3.5 In March 2019 the Proposed Development within the Site was extended to the north and a fourth VP was required to sufficiently cover that additional area. A fourth VP was added and surveyed between April 2018 and August 2019. The methodology was agreed with NatureScot and detailed between April 2018 and August 2019. The methodology was ag
within Table 8.1 Chapter 8: Ornithology and provided in Annex 6.
3.3.6 All VP locations are presented within Table 3.1 and illustrated in Figure 8.3 of the EIA Report.
3.3.7 Ground-thruthed modelled areas of visibility within the 2 km viewsheds from each VP location are further detailed are also illustrated in Figure 8.3 of the EIA Report
Table 3.1: VP locations.

VP	Grid reference	Radius (m)
1	NX 2537365649	2000
2	NX 2341466558	2000
3	NX 2252368728	2000
4	NX 2297867785	2000

VP Survey Effort

3.3.8 The total survey effort (hours) completed at each VP between April 2018 and August 2019 is summarised in Table 3.2. Full details of all survey times, field surveyors used and weather conditions are presented in Annex 3.
3.3.9 The total VP survey effort completed in 2018 at each VP was 78 hours. In 2019, an additional VP was added to account for a shift of the maximum developable area to the north. This approach was discussed and agreed with NatureScot by email on $5^{\text {th }}$ August 2019 (Table 8.1 Chapter 8: Ornithology, and Annex 6).
3.3.10 Survey effort during the breeding and non-breeding season met, or exceeded, the 36 hours recommended per VP (in accordance with current guidance ((SNH, 2017)).
3.3.11 Survey times were dispersed throughout the day and were also completed in a range of weather conditions, but always conducive to survey and safe access.
3.3.12 In accordance with current guidance (SNH, 2017), flight lines were mapped for all target species passing through the VP survey area. Details of species, number of birds, flight height in bands (at, below or above collision risk height), duration and direction were noted on standardised recording forms and field plans.
3.3.13 The following height bands (HT) were used in the field to record target species activity at, below or above collision risk height for subsequent use in the calculation of collision mortality risks. Height bands used in the field were based on a proposed turbine height of up to 149.9 m at the time of survey. The Proposed Development includes for turbines up to 180 m tip and therefore height band HT2 and HT3 incorporate the rotor sweep:

- HT1 <20m;
- HT2 20-150m; and,

Artfield Forest Wind Farm
Technical Appendix 8.1: Ornithology Appendix

- $\mathrm{H} T 3>150 \mathrm{~m}$.

Secondary Species

3.3.14 Secondary species were also noted in approximately fifteen minute summary intervals, with the number of birds present and general behaviour recorded in order to build an overall picture of activity. Fifteen minute periods were considered appropriate to ensure surveyors were fully alert to target species activity, which took priority during survey
3.3.15 Secondary species are defined here as commoner raptors (e.g. buzzard, kestrel and sparrowhawk), all gulls, raven, feral species and mallard, along with any large concentrations of Schedule 1 or Red listed? passerines as recorded during survey.

Moorland Breeding Bird Surveys

3.3.16 Moorland breeding bird surveys (MBBSs) were undertaken in 2018 and 2019
3.3.17 The MBBS Study Area comprised coverage of the Site, extended to include accessible areas of open habitats within 500 m as shown in Figure 8.4 of the EIA Report and in accordance with current guidance (SNH, 2017)
3.3.18 The methodology employed followed the Brown and Shepherd (1993). ${ }^{8}$ method for censusing upland breeding waders, based upon the recommendations set out in Calladine et al. (2009) ${ }^{9}$ as per current guidance (SNH, 2017). The methodology is suitable for moorland and open country species including, guidance (SNH, 2017). The methodology is suitable for moorland and some wildfowl species however, incidental observations of any raptors, owls or notable passerines (i.e. Schedule 1 and BoCC red-listed) may also be recorded.
3.3.19 A series of four staggered visits were completed between April and July 2018 (Year 1), and three staggered visits in between May and July 2019 (Year 2) (See limitations).
${ }^{7}$ Eaton et al (2015). Birds of Conservation Concern (BoCC).
${ }^{8}$ Brown, A.F. \& Shepherd, K.B. (1993). A method for censusing upland breeding waders. Bird Study, 40, 189-195.
${ }^{9}$ Calladine, J., Garner, G., Wernham, C. \& Thiel, A. (2009). The influence of survey frequency on population estimates of moorland breeding birds. Bird Study, 56 (3), 381-388.

Artfield Forest Wind Farm
Technical Appendix 8.1: Ornithology Appendix
3.3.20 During each survey visit a pre-determined route was walked through the survey area, with all birds During each survey visit a pre-determined route was walked through the survey area, with all bird
seen or heard, and their behaviours (e.g. displaying, carrying food etc.) were mapped in the field.
3.3.21 All surveys were undertaken during daylight hours and in fine conditions conducive to survey. Survey effort in 2018 (Year 1) and 2019 (Year 2) is summarised in Table 3.3. Full details of all survey times, field surveyors used and weather conditions are presented in Annex 3. Given the size of the MBBS Study Area, survey visits were typically undertaken by a small team of surveyors and/or over consecutive days.

Table 3.3: MBBS effort.

2018 (Year 1)			
Visit	Date	Start Time (24hrs)	Finish Time (24hrs)
1	27/04/2018	08:10	14.15
2	10/05/2018	07:10	12:55
3	$\begin{aligned} & 22 / 06 / 2018 \& \\ & 23 / 06 / 2018 \end{aligned}$	$\begin{array}{l\|l\|} \hline \text { 10:40 } \\ \text { 10:30 } \end{array}$	$\begin{aligned} & \text { 16:50 } \\ & \text { 15:45 } \end{aligned}$
4	$\begin{aligned} & \text { 07/07/2018 \& } \\ & 08 / 07 / 2018 \end{aligned}$	$\begin{aligned} & \hline \text { 09:30 } \\ & \text { 09:30 } \end{aligned}$	$\begin{aligned} & 15: 00 \\ & \text { 15:25 } \end{aligned}$
2019 (Year 2)			
Visit	Date	Start Time (24hrs)	Finish Time (24hrs)
1	$\begin{aligned} & 23 / 05 / 2019 \& \\ & 24 / 05 / 2019 \end{aligned}$	$\begin{aligned} & \text { 11:15 } \\ & \text { 11:10 } \end{aligned}$	$\begin{aligned} & \text { 17:50 } \\ & \text { 16:55 } \end{aligned}$
2	$\begin{aligned} & 12 / 06 / 2019 ~ \& ~ \\ & 13 / 06 / 2019 \end{aligned}$	$\begin{aligned} & \text { 10:15 } \\ & \text { 11:15 } \end{aligned}$	$\begin{aligned} & \text { 16:29 } \\ & \text { 17:10 } \end{aligned}$
3	05/07/2019	09:00	15:15

Breeding Annex 1/Schedule 1 Raptor and Owl Searche

3.3.22 Searches for Annex $1 /$ Schedule 1 breeding raptor and owls were undertaken between April and July 2018 (Year 1) and May and July 2019 with reference to species-specific methodologies outlined in Hardey et al. (2013). ${ }^{10}$
3.3.23 A series of search visits were made, staggered across the core breeding season, between April/May and July.
3.3.24 Survey effort is summarised in Table 3.4. Full details of all survey times, field surveyors used and weather conditions are presented in Annex 3.
3.3.25 The breeding raptor and owl Study Area comprised coverage of the Site and, where access allowed, areas out to 2 km as shown in Figure 8.4 of the EIA Report, in accordance with current guidance (SNH, 2017)
${ }^{10}$ Hardey, J., Crick, H., Wernham, C., Riley, H., Etheridge, B. and Thompson, D. (2013). Raptors: a field guide to survey and monitoring. 3rd Edition. The Stationery Office, Edinburgh,

rtfield Forest Wind Farm

echnical Appendix 8.1: Ornithology Appendix
3.3.26 Search effort and search areas were also informed through a review of desk study records. Th potential presence of golden eagle was discounted through desk study and therefore the Study Are did not extend to 6 km .

Table 3.4: Breeding raptor and owl search effort summary.
Year 1 Visit Date Start Time (24hrs) Finish Time (24hrs) 1 $18 / 04 / 2018$ $14: 20$ $20: 35$ 2 $25 / 04 / 2018$ $09: 20$ $15: 35$ 3 $08 / 05 / 2018$ $16: 55$ $20: 05$ 4 $22 / 05 / 2018$ $10: 15$ $16: 15$ 5 $28 / 06 / 2018$ $11: 00$ $17: 30$ 6 $24 / 07 / 2018$ $09: 20$ $15: 20$ 7 $27 / 07 / 2018$ $09: 20$ $15: 30$ Year 2 Visit Date Start Time (24hrs) Finish Time (24hrs) 1 $25 / 05 / 2019$ $10: 00$ $14: 30$ 2 $26 / 05 / 2019$ $11: 30$ $18: 30$ 3 $19 / 06 / 2019$ $10: 00$ $16: 05$ 4 $22 / 06 / 2019$ $09: 15$ $15: 15$ 5 $24 / 07 / 2019$ $12: 00$ $18: 00$

Breeding Nightjar Survey

3.3.27 A nightjar survey was carried out with reference to species-specific methodologies outlined in Gilbert et al. (1998) ${ }^{11}$, and comprised two survey visits, in June 2018 (one dawn and one dusk survey), during favourable weather conditions.
3.3.28 The nightjar survey area comprised all suitable habitat (including clear-fell and regenerating plantation) within the Site and out to 500 m (where access allowed) as shown in Figure 8.4 of the EIA Report.
3.3.29 Surveys were undertaken along a pre-determined transect through the Study Area, stopping at listening points adjacent to suitable breeding habitats, where singing (churring) males were listened for.
3.3.30 Survey effort is summarised in Table 3.5. Full details of all survey times, field surveyors used and weather conditions are presented in Annex 3
Table 3.5: Nightjar survey effort summary.

Visit	Date	Start Time (24hrs)	Finish Time (24hrs)
1	$28 / 06 / 2018$	$22: 30$	$00: 00$

${ }^{11}$ Gilbert, G., Gibbons, D.W. \& Evans, J. (1998). Bird Monitoring Methods. RSPB, Sandy.
Artfield Forest Wind Farm
Technical Appendix 8.1: Ornithology Appendix

Visit	Date	Start Time (24hrs)	Finish Time (24hrs)
2	$29 / 06 / 2018$	$03: 00$	$04: 30$

Breeding Black Grouse Searches
3.3.31 In accordance with current guidance (SNH, 2017), searches for lekking black grouse were undertaken in 2018, and consisted of a preparatory visit to check for habitat suitability for, followed by two surveys to search for lekking breeding black grouse, between late-April and mid-May.
3.3.32 The breeding black grouse Study Area comprised all suitable habitats (e.g. open moorland, woodland edges ad tracks) within, and out to 1.5 km , of the Site where access allowed, as shown in Figure 8.4 f the EIA Report, in accordance with current guidance (SNH, 2017).
3.3.33 Survey effort is summarised in Table 3.6. Full details of all survey times, field surveyors used and weather conditions are presented in Annex 3.
3.3.34 Search effort and survey areas have been informed by desk study records and through consultation with NatureScot.

Table 3.6: Black grouse effort summary.

Visit	Date	Start Time (24hrs)	Finish Time (24hrs)
1	$19 / 04 / 2018$	$05: 00$	$06: 40$
2	$26 / 04 / 2018$	$04: 45$	$07: 45$
3	$09 / 05 / 2018$	$04: 20$	$07: 20$

3.4 Result

VP Flight Activity Surveys

Target Species
3.4.1 Target Species flight activity recorded during the VP survey period (April 2018 to August 2019) from all VPs combined is summarised in Table 3.7
3.4.2 The total number of all flights, total number of birds recorded and the total time spent in each height band (HT) (in seconds), from all VP locations combined is presented. This includes some flights which were detected outside of the VP study area (500 m turbine buffer) and which are not atrisk to collision. Flights recorded within the 'at risk' window are presented in Table 3.8.
3.4.3 Detailed flight records are presented in Annex 4, which also indicates the total flight time for each species below, at and above the typical turbine rotor swept path. Flight lines for each species over the entire survey period are illustrated in Figures 8.5a-8.5b of the EIA Report.
Table 3.7: Target species flight activity summary (all flights).

Species	Total No. of Flights	Total No. of Birds	Total Flight Time (secs) ${ }^{\text {12 }}$
Greylag goose	1	1	70
Goosander	1	4	464
Grey heron	4	5	314
Hen harrier	5	5	508
Goshawk	8	8	528
Golden plover	1	2	70
Merlin	3	3	50
Peregrine falcon	1	1	126

Table 3.8: 'At Risk' 'arget species flight activity summary. Species Total No. of Flights Total No. of Birds Total Flight Time $(\mathbf{s e c s})^{12}$ Greylag goose 1 1 70 Goosander 1 4 116 Grey heron 3 3 169 Hen harrier 4 4 250 Goshawk 7 7 485 Golden plover 1 1 35 Peregrine falcon 1 1 126

Secondary Species

3.4.4 Relatively low levels of activity of the following secondary species were also recorded

- Mallard;
- Sparrowhawk;
- Buzzard;
- Black-headed gull
- Great black-backed gull.
- Common gull;
- Lesser black-backed gul
- Herring gull;
- Kestrel; and,

${ }^{12}$ Total time multiplied by the number of birds.

Artield Forest Wind Farm
Technical Appendix 8.1: Ornithology Appendix

- Raven

Collision Risk Mortality

3.4.5 Where sufficient "at collision risk" flight activity data has allowed, collision risk mortality as a result of birds colliding with rotor blades has been assessed using the SNH Collision Risk Models (CRMs) as detailed in Band et al. (2007).

3.4.6 Full details are provided in Technical Appendix 8.2

Moorland Breeding Bird Surveys

3.4.7 Surveys in 2018 and 2019 recorded only a small number of breeding wader and waterfowl territories, consisting of snipe and mallard as summarised in Table 3.9 and illustrated in Figure 8.7 of the EIA Report. Territories were primarily recorded in areas of open habitat on the periphery of the Site.
3.4.8 Much of the habitats within the MBBS Study Area, primarily comprised closed canopy coniferous woodlands, unsuitable for breeding species of open country.
3.4.9 A small number of common crossbill breeding territories were also recorded in suitable woodland habitat within the Study Area in 2018 and 2019. The species is likely to breed widely within suitable habitats of the Site.

Table 3.9: Target species breeding territories.

Species	No. of territories within the MBBS Survey Area	
	2018	$\mathbf{2 0 1 9}$
Snipe	2	1
Mallard	0	1

Breeding Annex 1/ Schedule 1 Raptor and Owl Searches
3.4.10 A single goshawk was recorded displaying over the Study Area during surveys in May 2018 (EIAR Volume 3a: Figure 8.7). No further observations of the species were made during further search effort in 2018 and 2019 and no nesting locations were confirmed. Observations of flight activity in April 2018 during VP flight activity surveys, did however suggest breeding was likely to have taken place by a single pair, with the nest range likely extending into the Site.
3.4.11 A barn owl nest site was located in the Study Area, to the north of the Site in 2018 (Confidentia Figure 8A of Volume 5).
3.4.12 A long-eared owl breeding territory was also recorded within the Study Area during a MBBS survey, in 2019 in plantation woodland in the eastern periphery of the Site. A bird was heard calling several times, but no definitive nesting location was identified.
3.4.13 A summary of Annex $1 /$ Schedule breeding raptor and owl territories recorded during searches is provided in Table 3.10.
3.4.14 No breeding Annex 1 / Schedule 1 raptor and owl territories were identified during surveys in 2019
3.4.15 The indicative locations of breeding territories based on the breeding Annex 1/ Schedule 1 raptor and owl searches are provided in Figure 8A of Volume 5.

Artfield Forest Wind Farm
echnical Appendix 8.1: Ornithology Appendix

Table 3.10: Target species breeding territories.

Species	No. of territories within the breeding raptor and owl Study Area	
	2018	$\mathbf{2 0 1 9}$
Goshawk	1	0
Barn owl	1	0

Breeding Nightjar Survey

3.4.16 During survey in 2018, no nightjar were recorded in the Study Area, and the species is considered to be absent.

Breeding Black Grouse Searches

3.4.17 During the searches in 2018, no black grouse were recorded in the Study Area, and the species is considered to be absent

Field Survey Limitations

3.4.18 All habitats within the Site were accessible. The wider Study Areas used for the MBBS (500m), Anne $1 /$ Schedule 1 Breeding Raptor and Owl Searches (2 km), Breeding Black Grouse Searches (1.5 km) and Breeding Nightjar Survey (500 m) were surveyed from suitable locations within the Site or public rights of way (PRoWs), scanning the Study Areas with the use of optics (telescope and binoculars),
3.4.19 Given the good visibility across the survey area from the PRoWs this is not considered a limitation to the results obtained.
3.4.20 Plantation woodland habitats within the survey area were surveyed by traversing tracks and clearings rather than walking directly through dense plantation habitat, due to logistical and health and safety considerations. The survey area was appropriately covered from the accessible tracks and clearings and this is not therefore considered a limitation to the results obtained
3.4.21 VP flight activity surveys commenced after a short period of "settling in", to ensure any potentia disturbance to target species present within each viewshed had reasonably passed and surveyors were alert to survey following a traverse to each VP location.
3.4.22 Surveyors were stationary until the completion of watches at the VP locations and (when the VP surveys were carried out simultaneously) were in contact to ensure flight lines of target species where they were recorded, were not duplicated.
3.4.23 During 2019 only three out of four MBBS surveys were completed. In recognition of the specie present and extensive baseline information available from historic surveys and nearby development, this is not considered to represent a limitation to the baseline.
3.4.24 During April 2019 VP surveys, a reduced number of hours were undertaken at VP1, VP3 and VP4 but the deficit in VP hours was redressed in May and June 2019. Given a high number of surveys at these VPs were done in early May 2019 this is not considered to represent a limitation to the baseline.
3.4.25 The Proposed Development layout was extended in 2019 and therefore Study Areas were accordingly increased to cover this area. This is not considered a limitation as the majority of the Site was covered by the surveys in two years, with the extension area covered in by one year of survey (agreed with NatureScot, Annex 6)

Artfield Forest Wind Farm
Technical Appendix 8.1: Ornithology Appendix
3.4.26 Given the extension to the Proposed Development layout to the north-west VP4 was set up in April 2019 to provide coverage of this area. A total of 36 hours were undertaken at VP4 from early May to August 2019. Only two flight of target species (one hen harrier and one goshawk) were recorded during the entire 36 hour survey period at VP4. Given the low activity of target species from VP4 during the breeding season, and the low number of target species flights during the non-breeding season at VPs 1-3, the lack of data for VP4 during the non-breeding season is not considered a limitation.
3.4.27 Overall no limitations to the survey data in establishing an accurate reflection of the levels of target species activity within adopted Study Areas, and particularly the Site, are identified.

ANNEX 1 - BIRD SPECIES SUMMARY

Table A1-1 provides a list of bird species referred to within Chapter 8: Ornithology of the EIA Report. Both common and species names are presented along with a summary of each species conservation status using the following abbreviations:

- Annex 1 - species listed on Annex 1 of the Birds Directive (2009/147/EC);
- Schedule 1, 1A, A1-species listed on Schedule 1, Schedule 1A or Schedule A1 of the Wildlife and Countryside Act (1981, as amended);
- BoCC - BoCCs as listed by leading bird conservation organisations in the UK, including the RSPB and BTO. Red and Amber categories are given (Eaton et al., 2015) ${ }^{13}$;
- SBL - species listed on the Scottish Biodiversity List; and,
- LBAP - species listed as a priority species for Dumfries and Galloway Local Biodiversity Action Plan.

Table A1-1: Summary of bird species.

Common Name	Species Name	Conservation Status
Whooper swan	Cygnus cygnus	Annex 1, Schedule 1, SBL, BoCC - Amber, LBAP
Pink-footed goose	Anser brachyrhynchus	BoCC - Amber
Greenland white-fronted goose	Anser albifrons	Annex 1, SBL, BoCC - Red, LBAP
Greylag goose	Anser anser	BoCC - Amber
Teal	Anas crecca	BoCC - Amber
Mallard	Anas platyrhynchos	BoCC - Amber
Tufted duck	Aythya fuligula	-
Goldeneye	Bucephala clangula	BoCC - Amber
Goosander	Tetrao tetrix	-
Black grouse	Ardea cinerea	SBL, BoCC - Red, LBAP
Grey heron	Milvus milvus	-
Red kite	Circus cyaneus	Annex 1, Schedule 1, Schedule 1A, SBL, BoCC - Amber, LBAP
Hen harrier	Annex 1, Schedule 1, Schedule 1A, SBL, BoCC - Red, LBAP	

[^1]Artfield Forest Wind Farm
Technical Appendix 8.1: Ornithology Appendix

Common Name	Species Name	Conservation Status
Goshawk	Accipiter gentilis	Schedule 1
Sparrowhawk	Accipiter nisus	-
Buzzard	Buteo buteo	-
Osprey	Pandion haliaetus	Annex 1, Schedule 1, SBL, BoCC - Amber, LBAP
Oystercatcher	Haematopus ostralegus	BoCC - Amber
Golden plover	Pluvialis apricaria	Annex 1, SBL, LBAP
Lapwing	Vanellus vanellus	SBL, BoCC - Red, LBAP
Dunlin	Calidris alpina	SBL, BoCC - Amber, LBAP
Common sandpiper	Actitis hypoleucos	BoCC - Amber
Redshank	Tringa totanus	BoCC - Amber
Woodcock	Scolopax rusticola	SBL, BoCC - Amber, LBAP
Snipe	Gallinago gallinago	BoCC - Amber
Black-headed gull	Chroicocephalus ridibundus	SBL, BoCC - Amber, LBAP
Great black-backed gull	Larus marinus	BoCC - Amber
Lesser black-backed gull	Larus fuscus	BoCC - Amber
Common gull	Larus canus	BoCC - Amber
Herring gull	Larus argentatus	SBL, Bocc - Red, LBAP
Barn owl	Tyto alba	Schedule 1, SBL, LBAP
Long-eared owl	Asio otus	-
Short-eared owl	Asio flammeus	Annex 1, SBL, BoCC - Amber, LBAP
Nightjar	Caprimulgus europaeus	SBL, BoCC- Amber, LBAP
Kestrel	Falco tinnunculus	SBL, BoCC - Amber
Merlin	Falco columbarius	Annex 1, Schedule 1, SBL, BoCC - Red, LBAP
Peregrine falcon	Falco peregrinus	Annex 1, Schedule 1, SBL, LBAP
Raven	Corvus corax	-
Common crossbill	Loxia curvirostra	Schedule 1

ANNEX 2 - EXISTING ORNITHOLOGICAL RECORDS

Table A2-1 provides a summary of existing ornithological records returned by RSPB within at least a 6 km radius from a centre grid reference within the Site. Only records from within the last 10 years are regarded (since 2009). Only species regarded as target species are included within Table A2-1.

Table A2-1: Summary of existing ornithological records (RSPB)			
Species	No. of Records	Date Range	Summary
Nightjar	4	2016 and 2018	All probable or possible breeders.

Table A2-2 provides a summary of existing ornithological records returned by SWSEIC within at least 5 km of the Site (extended to 10 km for Annex 1 and Schedule 1 species. Only records from within the last 10 years are regarded (since 2009). Only species regarded as target species are included within Table A2-2.

Table A2-2: Summary of existing ornithological records (SWSEIC)

Species	No. of Records	Date Range	Summary
Greylag goose	3	2011, 2013-14	A peak of 30 geese.
Pink-footed goose	1	2014	1 bird at Loch Ronald in May.
Goldeneye	1	2016	1 bird in January at Loch Heron.
Woodcock	1	2010	3 birds.
Whooper swan	2	2009 and 2016	A group of two and four in January in both years.
Black grouse	1	2011	1 male in September (non-lek).
Nightjar	1	2016	Unsexed bird in mid-August.
Red kite	1	2014	1 bird in April.
Hen harrier	1	2015	1 female in March.
Osprey	1	2014	1 bird in May at Loch Ronald chased by corvid.
Peregrine falcon	1	2009	1 in January.
Common crossbill	1	2013	3 birds in February.

Artfield Forest Wind Farm
Technical Appendix 8.1: Ornithology Appendix

$\begin{aligned} & 3 \\ & \text { z } \\ & \text { in } \end{aligned}$	$\frac{0}{0}$	$\frac{0}{2}$	$\frac{0}{0}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\frac{0}{2}$	응		$\stackrel{\circ}{0}$	$\frac{0}{2}$	$\frac{\mathrm{o}}{\mathrm{O}}$	$\frac{0}{2}$			O			\bigcirc	$\frac{0}{2}$	$\frac{0}{2}$	$\stackrel{\partial}{\circ}$	－	\bigcirc	잉	잉	응	－		$\frac{\circ}{\circ}$	$\frac{\circ}{\circ}$	잉
䓂	$\frac{0}{0}$	$\frac{0}{0}$	$\frac{0}{2}$	$\frac{0}{2}$	$\frac{0}{2}$			$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\stackrel{I}{\lambda}$	$\begin{aligned} & \mathrm{O} \\ & \stackrel{\rightharpoonup}{7} \end{aligned}$	$\frac{0}{2}$						$\stackrel{\circ}{\circ}$	$\frac{0}{0}$	$\frac{0}{0}$	$\frac{0}{2}$	응	\bigcirc	응	응	응	－		$\frac{0}{0}$		응
	$\frac{N}{\lambda}$	$\stackrel{\underset{N}{\mathrm{~N}}}{ }$	$\underset{\underset{N}{N}}{N}$	$\frac{\mathrm{N}}{\mathrm{~N}}$	$\frac{N}{N}$	$\frac{\stackrel{N}{N}}{N}$		$\underset{\sim}{\mathrm{N}}$	$\frac{\mathrm{N}}{\mathrm{~N}}$	$\frac{\underset{N}{N}}{N}$	$\underset{\underset{\sim}{N}}{N}$	$\frac{\underset{N}{N}}{N}$	$\underset{\underset{N}{N}}{ }$	$\underset{\sim}{\mathrm{N}}$	$\underset{N}{N}$		$\stackrel{N}{\underset{N}{N}}$	$\frac{\underset{N}{N}}{N}$	$\frac{N}{\lambda}$	$\frac{N}{N}$	－	$\stackrel{\circ}{7}$	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$	N	$\stackrel{\sim}{\lambda}$	$\stackrel{N}{\underset{\sim}{N}}$	$\frac{N}{\lambda}$		$\underset{\sim}{N} \stackrel{N}{N}$
	$\frac{N}{\lambda}$	$\stackrel{\underset{\mathrm{N}}{\mathrm{~N}}}{ }$	$\frac{\mathrm{N}}{\mathrm{~N}}$	$\sqrt[y]{y}$	$\frac{N}{N}$	$\frac{\underset{\lambda}{\lambda}}{}$		$\underset{\underset{N}{N}}{N}$	$\frac{N}{\lambda}$	$\frac{\underset{N}{N}}{N}$	$\frac{\mathrm{N}}{\mathrm{N}}$			$\underset{\lambda}{\lambda}$	$\underset{\underset{N}{N}}{\underset{N}{2}}$		$\stackrel{N}{\underset{N}{N}}$	$\frac{\underset{N}{N}}{N}$	$\frac{\sqrt{n}}{n}$	$\frac{\sqrt{2}}{2}$	$\stackrel{\rightharpoonup}{\lambda}$	\bigcirc	$\stackrel{\sim}{N}$	$\stackrel{\text { N }}{\sim}$	$\stackrel{\text { N }}{ }$	$\stackrel{N}{N}$	$\frac{\mathrm{N}}{\mathrm{~N}}$	$\frac{N}{\lambda}$	$\frac{\underset{N}{\lambda}}{}$	$\underset{\sim}{N} \underset{\sim}{N}$
$\begin{aligned} & \text { 믈 } \\ & \text { 흥 응 } \end{aligned}$	$\stackrel{\wedge}{\mathrm{N}}$	$\stackrel{\star}{\lambda}$	$\frac{\infty}{\infty} \begin{gathered} \infty \\ \infty \\ \infty \end{gathered}$	$\left\lvert\, \begin{gathered} \stackrel{\rightharpoonup}{\infty} \\ \infty \\ \infty \end{gathered}\right.$	$\left\{\begin{array}{l} \infty \\ \infty \\ \infty \end{array}\right.$	$\frac{\stackrel{\wedge}{\infty}}{\underset{\infty}{\infty}}$		$\begin{aligned} & \frac{n}{e} \\ & \stackrel{y}{6} \\ & \hline \end{aligned}$	$\frac{I}{\lambda}$	$\frac{\underset{N}{N}}{N}$	$\underset{\underset{\sim}{N}}{N}$			$\stackrel{n}{\underset{\sim}{N}}$	∞_{∞}^{∞}		$\stackrel{\infty}{\infty} \underset{\infty}{\infty}$	$\stackrel{\substack{\infty \\ \infty \\ \infty}}{\infty}$	$\frac{\infty}{\frac{\rho}{m}}$	$\frac{N}{\frac{N}{n}}$	∞_{∞}^{∞}	$\frac{\infty}{\infty}$	\bigcirc	\vec{f}	0	$\stackrel{\rightharpoonup}{\lambda}$	$\frac{N}{\lambda}$	$\stackrel{n}{\infty}_{\substack{\infty}}^{\infty}$		，
$\stackrel{\subseteq}{\underset{\sim}{\widetilde{x}}}$	$\frac{0}{0}$	$\frac{0}{0}$	$\frac{0}{0}$	$\frac{1}{2}$	$\frac{N}{\partial}$			$\begin{aligned} & \mathrm{o} \\ & \stackrel{\rightharpoonup}{\mathrm{~m}} \end{aligned}$	$\frac{0}{0}$	$\frac{\mathrm{O}}{\mathrm{O}}$	$\stackrel{0}{2}$						$\stackrel{ \pm}{\Delta}$		$\frac{0}{\circ}$	$\frac{0}{2}$	N	$\frac{m}{m}$	응	응	\bigcirc	0	$\frac{0}{\circ}$	$\frac{0}{0}$		\bigcirc
ξ	$\frac{\stackrel{n}{n}}{\stackrel{n}{n}}$	$\frac{n}{n}$	$\begin{aligned} & 3 \\ & 3 \\ & n \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & n \end{aligned}$	3	$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$				$\left\lvert\, \begin{aligned} & 3 \\ & \sum_{3}^{3} \\ & \sum_{3}^{3} \\ & \sum_{3} \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & 3 \\ & 2_{2}^{3} \\ & \sum_{2}^{2} \\ & 3 \end{aligned}\right.$	$\begin{aligned} & \stackrel{\rightharpoonup}{\stackrel{u}{u}} \\ & \stackrel{\rightharpoonup}{\underset{\sim}{u}} \\ & \stackrel{\rightharpoonup}{u} \\ & \hline \end{aligned}$						$\begin{gathered} \stackrel{n}{n} \\ \stackrel{\sim}{u} \end{gathered}$		$\left\lvert\, \begin{aligned} & \stackrel{n}{u} \\ & \hline 山 \end{aligned}\right.$		$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$	\sum_{n}^{3}	$\sum_{\substack{3}}^{\sum_{2}^{3}}$	$\left\lvert\, \begin{aligned} & 3 \\ & \sum_{2}^{3} \\ & \hline \end{aligned}\right.$	\sum_{2}^{3}	\sum_{2}^{3}	\sum_{2}^{3}	\sum_{3}^{3}	$\underbrace{3}_{2}$	\mid
$\stackrel{5}{3}$	$\underset{\underset{n}{n}}{n}$	$\frac{n}{\sum_{n}^{n}}$		$: \begin{aligned} & \left.\begin{array}{l} 8 \\ e \\ i \end{array}\right) \end{aligned}$	$\frac{\partial}{\frac{\partial}{\gamma}}$	$\frac{2}{3}$		$\frac{m}{d} \frac{5}{f}=$	$\stackrel{I}{\lambda}$	$\begin{aligned} & I \\ & I \\ & I \end{aligned}$	$\stackrel{\underset{\sim}{n}}{n}$			$\underset{\substack{i \\ ~}}{ }$	$\underset{\sim}{n}$		$\frac{\underset{f}{f}}{\frac{\partial}{2}}$	$\stackrel{\triangleleft}{\underset{~}{\triangleleft}}$	$\frac{r}{m}$	$\frac{\mathrm{N}}{\mathrm{~N}}$	$\frac{\mathrm{n}}{n}$	$\frac{n}{f}$	$\stackrel{\text { n }}{\sim}$	$\frac{\mathrm{n}}{\mathrm{n}}$	$\frac{\mathrm{n}}{\mathrm{n}}$	$\stackrel{i n}{n}$	$\frac{\operatorname{n}}{f}$	$\frac{n}{\underset{\sim}{m}}$		$\underset{\sim}{\text { N }}$
$\stackrel{n}{>}$	n	m	m	m	m	m		m	m	m	m	m	m	m	n		m	m	m	m	\sim	\sim	\sim	\sim	\sim	\sim	m	m	m	m
	$\begin{aligned} & \text { 号 } \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \underset{\sim}{2} \end{aligned}$	$\stackrel{o}{o}$		$\begin{gathered} o \\ \infty \\ \end{gathered}$			$\stackrel{\underset{\sim}{\mathrm{N}}}{\underset{\sim}{2}}$	$\begin{gathered} \stackrel{0}{0} \\ \stackrel{0}{0} \end{gathered}$	$\left\lvert\, \begin{gathered} 0 \\ \dot{0} \\ 0 \end{gathered}\right.$	$\begin{aligned} & \text { un} \\ & \stackrel{n}{ت} \end{aligned}$				$\underset{\sim}{3}$		$\stackrel{\stackrel{\rightharpoonup}{\underset{\sim}{4}}}{ }$	$\begin{aligned} & \stackrel{\sim}{\dot{\sim}} \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{m}{\tilde{r}} \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \underset{\sim}{\mathrm{I}} \end{aligned}$	$\stackrel{\stackrel{\sim}{n}}{\underset{\sim}{n}}$	$\begin{aligned} & \text { nf } \\ & \underset{\sim}{n} \end{aligned}$	$\begin{array}{\|c} \stackrel{n}{0} \\ \stackrel{\theta}{n} \end{array}$	$\stackrel{\stackrel{\rightharpoonup}{\mathrm{I}}}{\mathrm{I}}$	$\begin{aligned} & \stackrel{n}{\dot{\theta}} \\ & \end{aligned}$	$\begin{aligned} & \stackrel{o}{\mathrm{~g}} \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & \underset{\sim}{0} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { O} \\ & \underset{\ddot{\theta}}{1} \end{aligned}$		$\underset{\sim}{2} \underset{\sim}{\dot{2}}$
$\stackrel{-}{4}$ $\stackrel{4}{5}$ $\stackrel{7}{4}$		$\stackrel{\mathrm{O}}{\underset{\sim}{i}}$	$\begin{gathered} \mathrm{O} \\ \stackrel{\rightharpoonup}{n} \end{gathered}$		$\begin{aligned} & \stackrel{\sim}{n} \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{n}{0} \\ & 0 \end{aligned}$		$\begin{aligned} & 0 \\ & \underset{\sim}{\ddot{a}} \end{aligned}$	$\stackrel{O}{\dot{O}}$	$\stackrel{O}{\ddot{i}}$	$\begin{aligned} & \stackrel{\sim}{n} \\ & \dot{\infty} \end{aligned}$	$\stackrel{n}{n} \underset{\sim}{\infty} \mid \underset{\sim}{\circ}$			مٌ		$\stackrel{\sim}{\dot{a}}$	$\stackrel{\stackrel{\rightharpoonup}{7}}{\underset{\sim}{n}}$	$\begin{aligned} & \text { on } \\ & \stackrel{\rightharpoonup}{n} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \underset{\sim}{\dot{A}} \end{aligned}$	$\begin{gathered} \underset{\sim}{\dot{\sim}} \\ \end{gathered}$	$$	$\begin{aligned} & \stackrel{n}{\sim} \\ & \underset{\sim}{2} \end{aligned}$	$\stackrel{O}{\dot{\theta}}$	$\stackrel{\underset{\sim}{n}}{\underset{\sim}{A}}$	$\stackrel{\stackrel{n}{\underset{~}{\sim}}}{ }$	$\stackrel{\stackrel{n}{0}}{\stackrel{\circ}{\circ}}$	$\begin{aligned} & \text { O} \\ & \stackrel{1}{\circ} \end{aligned}$		¢
$\stackrel{0}{0}$	$\sum_{\frac{1}{2}}$	O	판	$\overline{\text { c }}$	\bigcirc	$\sum_{\mathbb{K}}$		\sum_{k}	\sum_{4}	U	¢	단	ㄷ	5	2		U	\sum	¢	๙	$\overline{\text { c }}$	\bigcirc	－	$\overline{\text { c }}$	\bigcirc	$\bar{\sim}$	$\bar{\sim}$	$\overline{\text { c }}$	$\overline{\text { c }}$	들
＞	m	\rightarrow	\rightarrow	m	\sim	\sim		\sim	\checkmark	m	m	m－	\rightarrow	\cdots	\rightarrow		\checkmark	\sim	m	m	m	\sim	\sim	m	\sim	m	\rightarrow	\checkmark	m	m
$\begin{aligned} & \text { N. } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { m } \\ & \text { d } \\ & \text { d } \\ & \frac{0}{1} \end{aligned}$		$\begin{aligned} & \infty \\ & \stackrel{1}{4} \\ & \stackrel{1}{f} \\ & \underset{\sim}{f} \end{aligned}$							$\begin{aligned} & \infty \\ & \text { d } \\ & \text { d } \\ & \text { N } \\ & \text { in } \end{aligned}$						3	$\begin{aligned} & \stackrel{\infty}{0} \\ & \underset{\sim}{\lambda} \\ & \stackrel{0}{0} \\ & \hline 0 \end{aligned}$		范	N	\mathfrak{c}			$\stackrel{\infty}{\stackrel{\infty}{1}}$	21／06／2018	－	－	－	$\begin{aligned} & \text { m } \\ & \stackrel{y}{n} \\ & \stackrel{y}{\mathrm{~N}} \end{aligned}$	－

 ลิ

1

 co
\vdots
3
s. $\frac{2}{1}$

$\stackrel{H}{7}$
$\stackrel{H}{n}$

$\stackrel{1}{5}$
\%

 \square
ᄃ

$\begin{aligned} & 3 \\ & 0 \\ & 0 \\ & i \end{aligned}$	\bigcirc		$\frac{0}{0}$			$\frac{0}{2}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\frac{0}{2}$	옹			$\stackrel{0}{0}$	$\frac{0}{\circ}$	응	$\frac{0}{2}$		$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$		응	응	응	$\frac{0}{0}$	응	O		－		$\frac{0}{2}$	$\frac{0}{2}$		잉		응
虃	\bigcirc		$\frac{o}{\circ}$			$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	0	$\begin{aligned} & \hline 0 \\ & \hline 0 \\ & \hline \end{aligned}$	$\stackrel{\circ}{\circ}$		$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	0	$\frac{0}{2}$	$\frac{\circ}{\circ}$	응		$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	0	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	ㅇ	0	$\frac{0}{0}$	$\stackrel{\circ}{\circ}$	\bigcirc	응			잉	$\frac{0}{9}$	$\frac{0}{0}$	$\frac{0}{9}$		잉
	\sim	$\stackrel{\text { N }}{\text { N }}$	$\stackrel{N}{\lambda}$			$\underset{\substack{\mathrm{N}}}{\substack{2 \\ 5}}$	$\frac{N}{\lambda}$	$\frac{\underset{N}{N}}{N}$	$\stackrel{N}{\underset{\sim}{N}}$			$\stackrel{N}{\underset{N}{N}}$	$\frac{\mathrm{N}}{\mathrm{~N}}$	$\frac{N}{\lambda}$				$\underset{\underset{N}{N}}{\underset{N}{2}}$	$\underset{N}{N}$	$\frac{\stackrel{N}{\lambda}}{\lambda}$	$\underset{\sim}{\underset{\sim}{N}} \underset{\sim}{\underset{N}{N}}$	$\stackrel{\underset{\mathrm{N}}{\mathrm{~N}}}{ }$		$\stackrel{\sim}{2}$			$\stackrel{\underset{\sim}{N}}{\underset{\sim}{N}}$	$\frac{\mathrm{N}}{\underset{\sim}{N}}$	$\underset{\sim}{N} \underset{\lambda}{\underset{N}{N}}$	$\stackrel{\mathrm{N}}{\mathrm{~N}}$	$\underset{\sim}{N} \underset{\sim}{\underset{N}{N}}$		$\stackrel{\text { N }}{\text { N }}$
	\sim	$\frac{\mathrm{N}}{\mathrm{~N}}$	$\frac{N}{\lambda}$			$\underset{\sim}{\underset{N}{N}}$	$\frac{N}{\underset{N}{N}}$	$\frac{\mathrm{N}}{\mathrm{~N}}$	$\stackrel{\underset{N}{N}}{ }$		$\underset{\sim}{N}$	$\stackrel{N}{\underset{N}{N}}$	$\frac{\underset{N}{N}}{N}$	$\frac{N}{\lambda}$				$\stackrel{N}{\lambda}$	$\frac{N}{N}$	$\frac{\underset{N}{N}}{N}$	$\stackrel{\rightharpoonup}{\lambda}$	$\underset{\underset{\lambda}{\mathrm{N}}}{ }$		$\stackrel{N}{\lambda}$	$\underset{\sim}{N}$	$\stackrel{\underset{\sim}{\lambda}}{\stackrel{N}{\lambda}}$	$\stackrel{\underset{\lambda}{\lambda}}{N}$		$\underset{\sim}{n}$	$\stackrel{\rightharpoonup}{i}$	$\underset{\sim}{\underset{N}{N}} \underset{\sim}{N}$		$\stackrel{\text { N }}{\text { N }}$
$\begin{aligned} & \text { 믈 } \\ & \text { 흥 己 } \end{aligned}$	\bigcirc	$\underset{\substack{\hat{\infty} \\ \infty}}{ }$	$\underset{\infty}{\stackrel{\lambda}{x}}$			$\underset{\sim}{N} \underset{\sim}{n}$		$\frac{\underset{N}{N}}{\stackrel{N}{N}}$	$\stackrel{n}{\underset{\lambda}{n}}$	$\underset{\underset{\sim}{n}}{\underset{\sim}{1}} \underset{A}{I}$	$\underset{A}{i}$	$\stackrel{\hat{v}}{\hat{N}}$	$\stackrel{\wedge}{\mathrm{N}}$	$\frac{\infty}{\infty}$		$\begin{gathered} \infty \\ \infty \\ \infty \\ \hline \end{gathered} \underset{寸}{寸}$	$\stackrel{y}{f}$	$\stackrel{N}{\stackrel{N}{0}}$	$\frac{\infty}{\infty}$	$\left\lvert\, \begin{aligned} & \infty \\ & \underset{\infty}{\infty} \\ & \hline \end{aligned}\right.$	$\frac{\infty}{\infty}$	$\frac{\infty}{\infty} \underset{\infty}{\infty}$		$\stackrel{\bigcirc}{-}$	$\begin{gathered} 0 \\ \stackrel{0}{0} \\ 0 \end{gathered}$	$\underset{\infty}{\underset{\infty}{\infty}}$	$\stackrel{\infty}{\stackrel{\infty}{\wedge}}$	$\stackrel{\infty}{\infty}$	$\frac{0}{2 n}$	$\stackrel{\infty}{\infty} \underset{\stackrel{\infty}{\infty}}{ }$	0		$\stackrel{0}{0}$
	\bigcirc	$\begin{aligned} & \mathrm{o} \\ & \stackrel{0}{0} \end{aligned}$	$\frac{0}{9}$			0	$\begin{array}{\|l\|} \hline 0 \\ 0 \\ 0 \end{array}$	$\frac{0}{0}$	응		－	0	$\frac{0}{2}$	$\frac{0}{\circ}$	옹			$\stackrel{0}{0}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \frac{0}{0} \end{aligned}$	$\stackrel{\rightharpoonup}{2} \stackrel{\circ}{2}$	$\stackrel{N}{0}$		N			$\frac{\mathrm{N}}{\partial}$	$\frac{0}{\circ}$	$\frac{0}{2}$	$\stackrel{n}{\lambda}$	$\frac{8}{5}$		응
$\stackrel{\breve{5}}{\ddagger}$	n	$\stackrel{3}{3}$	$\frac{3}{3}$			$\begin{aligned} & 3 \\ & 2 \\ & 3 \\ & 2 \\ & 2 \\ & 3 \\ & 2 \end{aligned}$	$\left\lvert\, \begin{aligned} & 3 \\ & y_{2}^{3} \\ & \sum_{3}^{2} \\ & \sum_{2}^{2} \\ & 3_{2}^{2} \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & 3 \\ & 2 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \end{aligned}\right.$	㦶			\sum_{2}^{2}	\mid					3	$\underset{\underset{Z}{u}}{\underset{\sim}{u}}$								气气㐅						$\begin{aligned} & 3 \\ & \sum_{z}^{3} \\ & z \end{aligned}$
$\frac{\square}{3}$	\sim	$\frac{\underset{m}{m}}{\substack{m}}$	$\stackrel{\underset{\partial}{f}}{\underset{f}{2}}$	$\stackrel{+}{f} \underset{子}{\stackrel{~}{f}}$		$\frac{m}{m}=$	$\frac{d}{d}$	$\frac{m}{\frac{m}{m}}$	$\underset{\underset{\sim}{N}}{N}$		$\stackrel{t}{n} \underset{n}{n}$	$\frac{m}{m}$	$\left\|\frac{\underset{\sim}{f}}{\underset{\sim}{f}}\right\|$	$\frac{N}{\lambda}$			$\frac{\mathrm{t}}{\mathrm{f}}$	$\stackrel{\rightharpoonup}{\underset{f}{f}}$	$\frac{0}{7}$	$\frac{\stackrel{0}{n}}{\stackrel{n}{n}}$	$\stackrel{N}{i} \stackrel{\underset{\sim}{N}}{\stackrel{\rightharpoonup}{N}}$	$\frac{n}{\sqrt[n]{f}}$			$\frac{7}{f}$	$\frac{m}{\underset{\gamma}{m}}$	$\stackrel{n}{n} \underset{\gamma}{n}$	$\frac{\sqrt[n]{n}}{\sqrt[n]{n}}$	$\mathfrak{i n}$	$\frac{m}{\stackrel{m}{n}}$			$\stackrel{\text { N }}{\text { N }}$
$\stackrel{\text { n }}{\wedge}$	\rightarrow	m	m	m		m	m	m	m	$m \mathrm{~m}$	m	m	m	m	m	m	m	m	m	m	m	m	m	m	n	m	m	m	m	m	m		m
	$\stackrel{\sim}{n} \underset{\sim}{\underset{\sim}{n}}$	$\begin{aligned} & \tilde{N} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$	$\begin{gathered} \underset{\sim}{O} \\ \underset{\sim}{i} \end{gathered}$				$\stackrel{o}{\stackrel{\rightharpoonup}{n}}$	$\left\lvert\, \begin{aligned} & \text { ņ } \\ & \underset{\sim}{2} \end{aligned}\right.$	$\begin{aligned} & \text { Un} \\ & \stackrel{0}{0} \end{aligned}$	$\stackrel{\sim}{n} \underset{\sim}{\sim}$	$\underset{~}{7}$	كِّ	$\mid \stackrel{n}{\underset{\sim}{\mathrm{I}}}$	$\begin{array}{\|c} \text { ṇ̛ } \\ \text { O} \end{array}$	$\begin{aligned} & \text { ö } \\ & \hline \end{aligned}$					$\begin{aligned} & \stackrel{o}{\dot{~}} \\ & \end{aligned}$		$\begin{gathered} \underset{\sim}{\underset{\sim}{4}} \end{gathered}$					$\left\lvert\, \begin{gathered} n \\ \stackrel{n}{i} \end{gathered}\right.$		$\begin{aligned} & \circ \\ & \vdots \\ & \underset{\sim}{9} \end{aligned}$	$\begin{gathered} \text { O} \\ \underset{\sim}{1} \end{gathered}$	$\begin{aligned} & 0 \\ & \stackrel{\rightharpoonup}{\eta} \end{aligned}$		$\stackrel{\sim}{\sim}$
	$\begin{gathered} \underset{\sim}{0} \\ \stackrel{n}{n} \end{gathered}$	$\begin{gathered} \tilde{m} \\ \underset{0}{0} \end{gathered}$	$\begin{array}{\|c} \underset{\sim}{\mathrm{i}} \\ \end{array}$			$\stackrel{n}{\tilde{n}}$	$\left\|\begin{array}{c} 0 \\ \underset{\sim}{0} \end{array}\right\|$	$\left\lvert\, \begin{aligned} & n \\ & \stackrel{n}{\oplus} \\ & \hline \end{aligned}\right.$	$\begin{aligned} & \stackrel{n}{\sim} \\ & \stackrel{1}{0} \end{aligned}$	$\underset{0}{\hat{0}} \underset{\sim}{\underset{\sim}{0}}$	$\underset{\sim}{\dot{\circ}}$	$\begin{aligned} & \circ \\ & \dot{\circ} \\ & \hline \end{aligned}$	$\left\lvert\, \begin{gathered} \underset{\sim}{\infty} \\ \ddot{\infty} \end{gathered}\right.$	$\begin{array}{\|l\|l} n \\ \ddot{\theta} \\ \hline \end{array}$	ْبٌ			$\begin{aligned} & \dot{寸} \\ & \dot{\theta} \\ & \hline \end{aligned}$	$\left\lvert\, \begin{aligned} & \stackrel{n}{0} \\ & \underset{\sim}{n} \end{aligned}\right.$	$\stackrel{\substack{0 \\ \underset{\sim}{2} \\ \hline}}{ }$		$\begin{gathered} \stackrel{\sim}{7} \\ \underset{\sim}{2} \end{gathered}$			Ö	$\begin{aligned} & \stackrel{0}{n} \\ & \stackrel{n}{7} \end{aligned}$	$\begin{array}{\|c} \stackrel{n}{\dot{\theta}} \\ \underset{\sim}{\circ} \end{array}$	$\stackrel{O}{\ddot{\theta}}$	$\begin{aligned} & 0 \\ & \vdots \\ & \vdots \\ & \underset{\sim}{9} \end{aligned}$	$\stackrel{\dot{寸}}{\dot{寸}}$	$\begin{aligned} & 0 \\ & \ddot{\theta} \end{aligned}$		Nّ
ミ̄	\sim	®	®	2		\bar{c}	$\underline{2}$	$\overline{\text { c }}$	$\overline{\text { c }}$	¢	2	¢	${ }_{2}$	2	$\overline{\text { c }}$	\％	2	$\overline{\text { c }}$	$\overline{\text { c }}$	\％	ㄷ	\％	ㄷ	\％	\％	$\stackrel{\sim}{2}$	$\bar{\sim}$	\％	2	\％	$\overline{\text { c }}$		$\stackrel{\square}{\square}$
9	\checkmark	－	ナ	－		m	\checkmark	m	\sim	＊	ナ	\sim	＊	m	\checkmark	－	＋	\sim	\sim	ナ	\checkmark	m	\checkmark	m	－	－	\sim	\sim	\checkmark	m	m		－
$\stackrel{ \pm}{\square}$						$\begin{gathered} 9 \\ \underset{\sim}{2} \\ \underset{\sim}{2} \\ \underset{\sim}{2} \end{gathered}$	$\left\lvert\, \begin{gathered} \underset{\sim}{2} \\ \underset{\sim}{\lambda} \\ \underset{\sim}{\lambda} \\ \hline \end{gathered}\right.$		$\begin{aligned} & \underset{\sim}{\lambda} \\ & \underset{\sim}{n} \\ & \underset{\sim}{\sim} \end{aligned}$			$\begin{gathered} \stackrel{\rightharpoonup}{2} \\ \stackrel{N}{\grave{0}} \\ \underset{\sim}{2} \end{gathered}$	$\begin{aligned} & \underset{\sim}{\partial} \\ & \underset{\sim}{\sim} \\ & \underset{\sim}{2} \\ & \underset{\sim}{2} \end{aligned}$	$$				$\begin{gathered} \underset{\sim}{a} \\ \stackrel{\rightharpoonup}{u} \\ \stackrel{\sim}{0} \end{gathered}$					$\stackrel{\rightharpoonup}{7} \stackrel{8}{\substack{4 \\ \\ \hline}}$	$\stackrel{\square}{7}$	－					$\begin{gathered} 9 \\ \underset{y}{2} \\ \underset{y}{2} \\ \underset{\lambda}{2} \end{gathered}$			－

Date	Surveyor	Start Time	Finish Time	Wind Speed	Wind Direction	Rain	Cloud Cover	Cloud Height	Visibility	Frost/ Snow
08/07/2018	RI	09:30	15:25	2/2/2/3/3/3	NW/NW/NW/NW/NW/NW	$\begin{gathered} \text { 0/0/0/0/0/ } \\ 0 \end{gathered}$	$\begin{gathered} 7 / 8 / 6 / 5 / 5 / \\ 5 \end{gathered}$	2/2/2/2/2/2	$\begin{gathered} 2 / 2 / 2 / 2 / 2 / \\ 2 \end{gathered}$	0
23/05/2019	RI	11:00	16:35	3/3/3/2/2/3	WNW/W/NW/NW/WNW/ WNW	$\begin{gathered} \hline \text { 0/0/0/0/0/ } \\ 0 \end{gathered}$	$\begin{gathered} \hline 3 / 2 / 2 / 1 / 1 / \\ 0 \end{gathered}$	2/2/2/2/2/2	$\begin{gathered} 2 / 2 / 2 / 2 / 2 / \\ 2 \end{gathered}$	0
23/05/2019	NB	11:15	17:50	$\begin{gathered} 4 / 3 / 3 / 3 / 3 / 3 / \\ 3 \end{gathered}$	NW	$\begin{gathered} \hline \text { 0/0/0/0/0/ } \\ 0 / 0 \\ \hline \end{gathered}$	$\begin{gathered} 1 / 1 / 1 / 1 / 1 / \\ 1 / 1 \end{gathered}$	$\begin{gathered} 2 / 2 / 2 / 2 / 2 / 2 / \\ 2 \end{gathered}$	$\begin{gathered} 2 / 2 / 2 / 2 / 2 / \\ 2 / 2 \\ \hline \end{gathered}$	0
24/05/2019	RI	11:10	16:15	3/3/3/2/2/3	NW/NW/NW/NW/NW/NW	$\begin{gathered} \hline \text { 0/0/0/0/0/ } \\ 0 \end{gathered}$	$\begin{gathered} \hline 7 / 7 / 6 / 6 / 5 / \\ 5 \end{gathered}$	2/2/2/2/2/2	$\begin{gathered} 2 / 2 / 2 / 2 / 2 / \\ 2 \end{gathered}$	0
24/05/2019	NB	11:35	16:55	4/4/3/3/3/3	NW/NW/NW/NW/NW/NW	$\begin{gathered} \text { 0/0/0/0/0/ } \\ 0 \end{gathered}$	$\begin{gathered} 6 / 4 / 7 / 7 / 4 / \\ / 4 \\ \hline \end{gathered}$	2/2/2/2/2/2	$\begin{gathered} 2 / 2 / 2 / 2 / 2 / \\ 2 \end{gathered}$	0
12/06/2019	RI	10:15	16:05	3/3/3/3/4/4	NNE/NNE/NNE/NNE/N/N	$\begin{gathered} \hline \text { 0/0/0/0/0/ } \\ 0 \end{gathered}$	$\begin{gathered} \hline 8 / 8 / 8 / 8 / 8 / \\ 8 \end{gathered}$	2/2/2/2/2/2	$\begin{gathered} 2 / 2 / 2 / 2 / 2 / \\ 2 \end{gathered}$	0
12/06/2019	NB	10:35	16:29	$\begin{gathered} \text { 2/4/4/4/4/4/ } \\ 5 \end{gathered}$	N/N/NE/NE/ENE/ENE	$\begin{gathered} \hline \text { 0/0/0/0/0/ } \\ 0 \end{gathered}$	$\begin{gathered} \hline 8 / 8 / 8 / 8 / 8 / \\ 8 \\ \hline \end{gathered}$	1/2/2/2/2/2	$\begin{gathered} 2 / 2 / 2 / 2 / 2 / \\ 2 \\ \hline \end{gathered}$	0
13/06/2019	RI	11:15	16:40	$\begin{gathered} 2 / 1 / 1 / 2 / 2 / 2 / \\ 2 \end{gathered}$	NNE/S/S/SSW/S/SW	$\begin{gathered} \text { 0/0/0/0/0/ } \\ 0 \end{gathered}$	$\begin{gathered} \text { 6/6/8/8/8/ } \\ 8 \end{gathered}$	2/2/2/2/2/2	$\begin{gathered} 2 / 2 / 2 / 2 / 2 / \\ 2 \end{gathered}$	0
13/06/2019	NB	11:30	17:10	$\begin{gathered} \hline 1 / 2 / 2 / 2 / 2 / 2 / \\ 3 \end{gathered}$	WNW	$\begin{gathered} \hline \text { 0/0/0/0/0/ } \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} \hline 8 / 8 / 8 / 8 / 8 / \\ 8 \\ \hline \end{gathered}$	1/2/2/2/2/2	$\begin{gathered} \hline 2 / 2 / 2 / 2 / 2 / \\ 2 \end{gathered}$	0
05/07/2019	RI	09:15	15:00	3/3/3/3/2	WNW/NW/NW/W/W	1/1/0/1/1	8/8/7/8/8	1/2/2/2/2	2/2/2/2/2	0
05/07/2019	TB	09:10	14:20	2/2/2/2/2/2	W/W/W/W/W/W	$\begin{gathered} \hline 1 / 0 / 0 / 1 / 1 / \\ 1 \end{gathered}$	$\begin{gathered} \hline 8 / 8 / 7 / 8 / 8 / \\ 8 \end{gathered}$	2/2/2/2/2/2	$\begin{gathered} 2 / 2 / 2 / 2 / 2 / \\ 2 \end{gathered}$	0
05/07/2019	AJM	09:00	14:35	2/2/1/1/1/2	w/w/w/w/w/w	$\begin{gathered} \text { 2/2/0/0/2/ } \\ 2 / \\ \hline \end{gathered}$	$\begin{gathered} 8 / 7 / 7 / 8 / 8 / \\ 8 \\ \hline \end{gathered}$	1/2/2/2/2/2	$\begin{gathered} 2 / 2 / 2 / 2 / 2 / \\ 2 \\ \hline \end{gathered}$	0
05/07/2019	DH	09:30	15:15	3/2/2/2/3/2	WNW/WNW/W/WSW/W/ WNW	$\begin{gathered} \hline 1 / 0 / 0 / 1 / 1 / \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} \hline 8 / 7 / 7 / 8 / 8 / \\ 8 \\ \hline \end{gathered}$	1/2/2/2/1/2	$\begin{gathered} 1 / 2 / 2 / 2 / 2 / \\ 2 \\ \hline \end{gathered}$	0

$\stackrel{⿳ 亠 二 口 犬}{\circ}$	\％\％			
亮	$\%$			
	\％\％			
	$\%$			
	$\%$			
磓	$\because \%$			
管皆	言棓馀			
	57			
¢	${ }^{n}$			
䔒恧	${ }_{8}^{8}$			
${ }_{\text {意晨 }}$	육융			
\％				

\％	
포ㅍㅡㅢ	－0．
	ダタ○
봎	$\bigcirc 00$
	がき
	$\rightarrow-$
$\stackrel{3}{ }$	$\cdots \sim$
\％	

ANNEX 5 - CUMULATIVE DEVELOPMENTS WITHIN NHZ 19

Table A5-1: . Cumulative Wind Farm Developments identified within NHZ 19 (Western Southern Uplands

Development	Number of Turbines
Operational / Under	
Hagshaw Hill	26
Windy Standard	36
Hare Hill	20
Artield Fell	15
Minsca	16
Dalswinton	15
Wether Hill	14
Hagshaw Hill Extension	20
Whiteside Hill	13
Harestanes/ Forest of Ae	68
Clyde	152
Nutberry	6
Dungavel Hill	13
Bankend Rig	11
Carscreugh	18
Arecleoch	60
Barlockhart	4
Artfield Hill Extension	7
Glenchamber	11
Sanquhar	9
Andershaw	11
Minnygap	10
Dersalloch	23
Plascow	3
Hare Hill Extension	35
Auchrobert	12
Galawhistle	22
Airies Farm	14
Brockloch Rig	30
Blackcraig	23
Glen App and Loch Ree	11
Afton	25
Consented	
Kilgallioch	96

Artfield Forest Wind Farm
Technical Appendix 8.1: Ornithology Appendix

Development	Number of Turbines
Knockman Hill	5
Kype Muir	26
Penbreck	6
Solwaybank	15
Middle Muir	15
Poniel	3
Magheughan Rig	6
Kennoxhead	19
Gass	9
Barlockfort Moor Extension	4
Bankend Rig Extension	3
Crookedstane	4
Lion Hill	4
Cumberhead Hill	11
Sandy Knowe	24
Stranoch	24
Kype Muir Extension	15
South Kyle	50
Benbrack	18
Windy Rig	12
Chirmorie	21
Lethans	22
Douglas West	13
Penbreck	3
Lorg	15
Pencloe Forest	21
Application/ Appealed	
Fell	9
Shepherd's Rig	19
Margree	15
Glentaggart	5
Twentyshilling Hill	9
Enoch Hill	19
Wether Hill Extension	11
Quatans Hill	19
Glenmuckloch Farm	8
Harryburn	17
Overhill Wind Farm	10
North Lowther	30

Artfield Forest Wind Farm
echnical Appendix 8.1: Ornithology Appendix

Development	Number of Turbines
Cornharrow	11
Windy Standard III	20
Glenshimmeroch	10
Troston Loch	14
Polquhairn	9

ANNEX 6 - NATURESCOT SURVEY METHODOLOGY CORRESPONDANCE

From: John Gibson [mailto:John.Gibson@nature.scot]
 ent: 05 August 2019 16:2
 To: Stacey Whiteley
 c: Howard Fearn; 'Tom Walker'|

Hi Stacey,
I've now read through the Artfield Wind Farm - Scope of Ornithological and Ecological survey work
Based on previous survey work and surveys proposed/underway for 2019 we are content that the proposed approach to baseline ornithological and ecological information gathering and ornithological target pecies will be sufficient to inform and support any future planning application. While the VP survey work prosed/undenway for 2019 we are not overly concerned that this should hold up any planning application

If you need anything else just get in touch
Regards,
John
hn Gibson Operations Officer
cottish Natural Heritage | Holmpark Industrial Estate | New Galloway Road | Newton Stewart | DG8 6BF | 1671404700 Dualchas Nadair na h-Alba | Raon Gniomhachais Phairc an Tuilm | Rathad Ghall-Ghaidhealaibh Nuaidn | Baile U Nan Stïbhartach DG8 6BF nature.scot-Connecting People and Nature in Scotland @nature_sco

Artield Forest Wind Farm
echnical Appendix 8.1: Ornithology Appendix

Technical Appendix 8.2: Collision Risk Analysis

CONTENTS

Artfield Forest Wind Farm

Technical Appendix 8.2: Collision Risk Analysis

1 INTRODUCTION 1
2 METHOD. 1
2.2 Wind Farm Characteristics 1
2.3 Viewsheds.2
2.4 'At-risk' Flight Activity 2
2.5 Species Parameters3
3 COLLISION MORTALITY RISK CALCULATIONS 4
3.1 Hen Harrier 4

1 INTRODUCTION

1.1.1 This appendix has been prepared to accompany Chapter 8: Ornithology of the Artfield Forest Wind Farm (the "Proposed Development") Environmental Impact Assessment (EIA) Report (EIAR).
1.1.2 It presents the details and results of Collision Risk Analysis, completed to inform the assessment of the Proposed Development
1.1.3 Only common bird species names are referred to within this Appendix. Technical Appendix 8.1 of th EIAR provides a summary of all bird species referred to herein. Both common and species names, together with a summary of their conservation status as relevant is provided.

2 METHOD

2.1.1 The Band collision risk model (CRM) (Band et al., 2007^{1}) has been used to estimate the collisio mortality risk to target species. The Band model calculates collision mortality risks in three stages

- Stage 1: the estimation of the number of birds passing through the rotor swept volume of the wind farm, based on observed VP flight activity data
- Stage 2: the estimation of collision likelihood i.e. the probability of a bird flying through a roto being hit, based on bird and wind farm parameters and whereby all collisions are assumed to be fatal. This provides an estimate of how many fatal collisions would occur, in theory, should bird take no avoiding action; and,
- After multiplying State 1 and Stage 2 an avoidance factor is then applied i.e. whereby it is assumed birds take action to avoid collision.

2.2 Wind Farm Characteristics

2.2.1 Wind farm characteristics are summarised in Table A2.1 and have been based upon a candidate turbine of the Vestas V150-4.2MW, with an approximate hub height of 105 m and rotor diameter of 150 m . Where any uncertainty exists regarding turbine parameters, best available or worst-case figures have been included
2.2.2 For the purposes of analysis, the flight risk volume (Vw) is based on a buffer constructed with a radius of 500 m around the outer proposed turbine locations, with a height at least equal to the roto diameter.
Table 2.1: Wind farm characteristics.

Parameter	Value	Unit
Size of wind farm (5000 turbine buffer)	483.8	Hectares (ha)
No. of rotors	12	-
No. of blades	3	-
Height to tip	180	Meters (m)
Hub height	105	Meters (m)

[^2] Risk at Wind Farms,
Artield Forest Wind Farm
Technical Appendix 8.2: Collision Risk Analysis

Parameter	Value	Unit
Rotor diameter	150	Meters (m)
Rotor radius	75	Meters (m)
Max. chord	4.2	Meters (m)
Pitch	15	Degrees $\left({ }^{\circ}\right)$
Rotation period ${ }^{2}$	6	Seconds (s)
Downtime	15	Percentage $(\%)$

2.3 Viewsheds
2.3.1 Flight activity data for use in CRMs has been obtained from a total of four Vantage Point (VP) locations (VP1, 2, 3 and 4), utilised during baseline VP flight activity surveys between April 2018 and August 2019.
2.3.2 Visible areas within the viewshed for each VP were estimated in GIS (Pitney Bowes MapInfo 2019.2), using an observer height of 1.5 m (i.e. seated) and a 20 m vertical offset above the ground surface, using an observer height of 1.5 m (i.e. seated) and a 20 m vertical offset above the ground surface. visible areas (ha) within the viewsheds for each VP location and within the wind farm (500 m turbine buffer), are summarised in Table A2.2.
2.3.3 For the purposes of the calculation of collision mortality risks, to account for viewshed overlap and For the purposes of the calculation of colision mortality risks, to account for viewshed overlap and
the undertaking of simultaneous watches from VPs where this occurred, viewshed visible areas have been corrected to remove overlapping areas of viewsheds.
2.3.4 Any flights seen from the VP and survey effort within the overlapping areas have however been retained for the purposes of a conservative approach.
Table 2.2: VP observational effort.

VP	Total Visible Area (ha)	Visible Area within Wind Farm (ha)	Corrected Visible Area within Wind Farm (ha)
VP1	527.2	34.82	34.82
VP2	497.3	175.20	138.6
VP3	590.3	266.20	108.4
VP4	499.9	238.10	163.6

2.4 'At-risk' Flight Activity

2.4.1 An 'at-risk' flight is identified as one which is visible from the VP and which passes into the wind farm area (500 m turbine buffer), with at least part of its flight recorded between 30 m and 150 m comprising Height Band (HT) HT2 and HT3 utilised during baseline VP flight activity surveys.

[^3]Technical Appendix 8.2: Collision Risk Analysis
2.4.2 No duplicate flights were recorded during simultaneous VP watches and for the purposes of conservative analysis all "at-risk" flights which were recorded within overlapping viewshed areas have been included (as detailed above)
2.4.3 'At-risk' flight durations for use in CRMs have been calculated on the basis of clipped flight length recorded within the wind farm area (500 m turbine buffer) and on the basis of the proportion of tota recorded within the wind farm area (500 m turbine buffer
flight time spent at collision risk height (i.e. $30-180 \mathrm{~m}$).
2.4.4 'At-risk' flight durations are then adjusted to give an estimate of the total expected over a species occupancy within the VP study area, with potential flight time estimated from the sum of day length of each day using the method of Forsythe et al. $\left(1995^{3}\right)$ with a latitude of 54.97 .

2.5 Species Parameters

2.5.1 Collision risk analysis has been completed for hen harrier. No other target species recorded during V flight activity surveys between April 2018 and August 2019 had three or more 'at risk' flights, with resulting collision risks reasonably concluded as being very low.
2.5.2 Table A2.3 summarises species parameters used in the collision risk analysis for hen harrier. The probability of collision for each target species has been estimated in accordance with the methodolog outlined in NatureScot (formerly Scottish Natural Heritage (SNH)) guidance (SNH, 2000.4), and is presented in Table A2.4
2.5.3 Body length, wingspan and flight speeds have been taken from Proven \& Whitfield $\left(2007{ }^{5}\right)$, with avoidance rates taken from current NatureScot guidance (SNH, 2018. ${ }^{6}$.
Table 2.3: Target species parameters.

Species	Length (m)	Wingspan (m)	Flight Speed $(\mathrm{m} / \mathrm{s})$	Collision Probability	Avoidance Rate	Occupancy
Hen harrier	0.48	1.10	12	5.8%	99%	All year?

${ }^{3}$ Forsythe, W. C., Rykiel, Jr, E., J., Stahl, R.S., Wu, H. and Schoolfield, R. M. (1995). A Model Comparison for Daylength a a Function of Latitude and Day of the Year. Ecological Modelling, 80, pp. 87-95
${ }^{4}$ SNH (2000). Windfarms and birds: calculating a theoretical collision risk assuming no avoidance action. SNH, Edinburgh. ${ }^{5}$ Provan, S. and Whitfield, D. (2007). Avian Flight Speeds and Biometrics for Use in Collision Risk Modelling. Report to NatureScot (formerly SNH) from Natural Research (Projects) Ltd.
${ }^{6}$ SNH (2018). Avoidance Rates for the onshore SNH Wind Farm Collision Risk Model (v2 September 2018). SNH, Invernes ${ }^{7}$ Hen harrier flight activity recorded during the breeding season (April to August inclusive) and non-breeding season (September to March inclusive).
Artfield Forest Wind Farm
Technical Appendix 8.2: Collision Risk Analysis

Table 2.4: Hen harrier collision probability
CALCULATION OF COLLISION RISK FOR BIRD PASSING THROUGH ROTOR AREA

3 COLLISION MORTALITY RISK CALCULATIONS

3.1 Hen Harrier

3.1.1 For the purposes of this analysis collision mortality risk calculations are undertaken for the following:

- Year 1 Non-breeding Season (September 2018 to March 2019)
- Year 2 Breeding Season (April to August 2019)
3.1.2 No 'at risk' flight activity for hen harrier was recorded during Year 1 Breeding Season (April to August 2018), with collision risk mortality for this period assigned a 0.00 value.

Year 1 Non-breeding Season

VP	No. of Flights	No. of Birds	At Risk Duration in seconds
1	0	0	0
2	2	2	16.24
3	0	0	0
Totals	$\mathbf{2}$	$\mathbf{2}$	$\mathbf{1 6 . 2 4}$

VP	Watch data		Flying time (s)	Flying time hahr-1	Weighted flying time ha hr^ $^{\wedge}-\mathbf{1}$		
	Area (ha)	Time (hrs)	HaHr	Risk height	Risk height	Weighting	Risk height
1	34.8	42	1462.44	0.00	0.0000000000	0.123554042	0.000000000
2	138.6	42	5821.20	16.24	0.0000007751	0.491803279	0.000000381
3	108.4	42	4552.80	0.00	0.0000000000	0.384642680	0.000000000
Totals	$\mathbf{2 8 1 . 8 0}$	$\mathbf{1 2 6}$	$\mathbf{1 1 8 3 6 . 4 4}$	$\mathbf{1 6 . 2 4}$	$\mathbf{0 . 0 0 0 0 0 0 7 7 5 1}$	$\mathbf{1 . 0 0 0 0 0 0 0 0 0 0}$	$\mathbf{0 . 0 0 0 0 0 0 3 8 1 2}$

Mean activity hr^-1 in wind farm		WIND FARM DATA		
Risk height	0.00018	0.0024%	Wind farm area (ha)	483.8

Potentially Active Hours	2168.4^{8}	(September 2018-March 2019)			
Downtime	15%				
$\mathbf{V w}=$	725700000			D	
$\mathrm{Vr}=$	992429	No. Turbines	12	$\mathrm{~L}+\mathrm{d}$	
$\mathrm{Vr} / \mathrm{Vw}=$	0.0013675				
Speed $=$	12				
Vw Occupancy $=$	0.3999	1439.6			
Vr Occupancy $=$	0.0005	2.0			
Transit time $=$	0.3900				
Transits $=$	5.048				
Collision probability $=$	0.058				

Collisions with no avoidance	0.293
Collisions with $\mathbf{9 9 \%}$ avoidance	0.003
Collisions with $\mathbf{9 9 \%}$ avoidance \& downtime	0.002
$\mathbf{3 0}$ year mortality	0.088
$\mathbf{3 0}$ year mortality with $\mathbf{1 5 \%}$ downtime	0.075
Years for 1 death	401.82

${ }^{8}$ Potentially active hours calculated from the sum of day lengths between $1^{\text {st }}$ September and $31^{\text {st }}$ March (excl. $28^{\text {th }}$ February).
Artfield Forest Wind Farm
Technical Appendix 8.2: Collision Risk Analysis

Year 2 Breeding Season

VP	No. of Flights	No. of Birds	At Risk Duration in seconds
1	0	0	0
2	0	0	0
3	0	0	0
4	1	1	38.11
Totals	1	1	38.11

VP	Watch data		Flying time (s)	Flying time hahr-	Weighted flying time ha hr^-1		
	Area (ha)	Time (hrs)	HaHr	Risk height	Risk height	Weighting	Risk height
	34.8	36.0	1253.52	0.00	0.0000000000	0.078173409	0.000000000
2	138.6	36.0	4989.60	0.00	0.0000000000	0.311166988	0.000000000
3	108.4	36.0	3902.40	0.00	0.0000000000	0.243365812	0.000000000
4	163.6	36.0	5889.60	38.11	0.0000017976	0.367293790	0.000000660
Totals	445.4	$\mathbf{1 4 4 . 0}$	$\mathbf{1 6 0 3 5 . 1 2}$	$\mathbf{3 8 . 1 1}$	$\mathbf{0 . 0 0 0 0 0 1 7 9 7 6}$	$\mathbf{1 . 0 0 0 0 0 0 0 0 0 0}$	$\mathbf{0 . 0 0 0 0 0 0 6 6 0 3}$

Mean activity hr^-1 in wind farm			WIND FARM DATA	
Risk height	0.00032	0.0319%	Wind farm area (ha)	483.80

Potentially Active Hours	2327.7.9	(April 2019 - August 2019)			
Downtime	15			D	150
V w $=$	725700000			L+d	4.68
$\mathrm{Vr}=$	992429	No. Turbines	12		
$\mathrm{Vr} / \mathrm{Vw}=$	0.0013675				
Speed =	12				
Vw Occupancy =	0.7435	2676.8			
Vr Occupancy =	0.0010	3.7			
Transit time =	0.3900				
Transits =	9.386				
Collision probability =	0.058				

Collisions with no avoidance	0.544
Collisions with 99\% avoidance	0.005
Collisions with $\mathbf{9 9 \%}$ avoidance \& downtime	0.005
$\mathbf{3 0}$ year mortality	0.163
30 year mortality with 15\% downtime	0.139
Years for 1 death	216.10

${ }^{9}$ Potentially active hours calculated from the sum of day lengths between $1^{\text {st }}$ April and $31^{\text {st }}$ August.
Arttield Forest Wind Farm
echnical Appendix 8.2: Collision Risk Analysis

Collision Mortality Risk Summary - Hen Harrier

Season	Annual Seasonal Mortality	$\mathbf{3 0}$ Year Seasonal Mortality
Year 1 Breeding Season (2018)	0.000	0.000
Year 1 Non-breeding Season (2018-19)	0.002	0.075
Year 2 Breeding Season (2019)	0.005	0.139

[^0]: ${ }^{2}$ Sgurr Energy 2014 14_P_1_0674 Environmental Statement Vol. 2 Appendix 7A phase 1 Habitat and NVC Survey, and Drawing no. 162183-003 Figure 7.5 NVC Results.
 Artfield Forest Wind Farm

[^1]: ${ }^{13}$ Eaton M.A, Aebischer, N.J, Brown, A.F., Hearn, R.D., Lock, L., Musgrove, A.J., Noble, D.G., Stroud, D.A. \& Gregory, R.D. (2015) Birds of Conservation Concern 4: the population status of birds in the United Kingdom, Channel Islands and Isle of Man. British Birds, 108, 708-746.

[^2]: ${ }^{1}$ Band, W., Madders, M. and Whitfield, D.P., (2007). Developing Field and Analytical Methods to Assess Avian Collision

[^3]: Based on a speed range of 4.9 - 12.0 rpm (http://www.chubut.gov.ar/portal/wp-organismos/ambiente/wp-ontent/uploads/sites/8/2018/04/Anexo-4-0067-7060-vO0GENspecs.pdf) and a conservative operating speed estimate derived as 20% of the maximum speed.
 Artield Forest Wind Farm

